Evidence-Based Assessment of Children who are Deaf or Hard of Hearing (DHH)

Kristina M. Blaiser, PhD, CCC-SLP
Kristina.Blaiser@isu.edu
208-373-1814

Hearing Loss Statistics

2 per 1000 babies are born with hearing loss

By school age, close to 15% of children exhibit some level/type of hearing loss

Approximately 80% of students who are D/HH attend their neighborhood school

40% of students who are D/HH have additional needs

U.S. Department of Education, Office of Special Education and Rehabilitative Services, \& Office of Special Education Programs, 2004

Evidence-based practices

- A significant amount of the published research we have to date describes the population- doesn't really help us as service providers.

Historically

- Compared children based on communication modality
-ASL- Oral communication

As technology became more common....

- Started looking at age of implantation -Comparing "early" to "late" implantation

Today

- Research comparing young children with hearing loss to age-matched peers without hearing loss

HOWEVER...

- As a field we see a disconnect between preparation, caseload, and best practice recommendations
- Lack of confidence of providers (Blaiser \& Mahshie, 2018; Harrison et al., 2016)
- Graduate level courses do not include hearing-specific information for serving any population

The importance of access

Perceptual saliency

- What is seen
- What is heard

Infants take statistics on the language(s) they are exposed to

Infants are Little Scientists: They Take Statistics

https://www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies?language=en

Pat Kuhl (Dec. 13, 2010)

"Babies absorb the statistics of their language to become culture bound listeners based on the representations in their memory that are formed early in development"

Importance of Access

Access has changed

- When a child has access to sound
- How the child accesses sound

WHEN...

https://www.nidcd.nih.gov/health/statistics/infant-hearing-screening-rates-1999-2009

HOW...
13

$$
B
$$

https://www.advancedbionics.com/us/en/home/ab4kids/tools-for-schools.html

UNFAIR HEARING TEST

Erber’s Hierarchy

Describes the limitations of using the audiogram

Focuses on detection only:
We do so much more with sound!

Comprehension

Identification

Discrimination

Detection

Moving From the Audiogram

Access to audibility:

- Speech Intelligibility Index (SII)
- How much speech information is available to the student
- Detection--- ACCESS
- Simple calculation can be made by audiologist based on student's audiogram
- SII from hearing aid verification: Real ear measures
- SII app
- Count the dot audiogram
- Need to request this information from community/educational audiologist
- Helps to direct recommendations related to technology/communication options/"least restrictive environment"

Flat 40dB Loss

- \# of highlighted dots would be audible
- 28 dots are audible= $28 \% \mathrm{SII}$
- A person with normal hearing (15dBHL flat loss) would have 100 dots audible $=100 \%$ SII

20Q: Using the Aided Speech Intelligibility Index in Hearing Aid Fittings.
Susan Scollie, Ph.D. Audiology Online.

New "Apps"

-What if a two-year-old scores within normal limits on the PLS? Do they qualify? What about the CELF?

- Does the PLS, the CELF tell the whole picture?
-What assessments are most sensitive?
-What else do we do?

How do we assess young children WHO are DHH?
-What are the tools?
-Formal assessments

- Informal assessments
-Diagnostic intervention

Communication Domains

Blaiser, O’Neill, \& Darling, 2021

Blaiser, O’Neill, \& Darling, 2021

Blaiser, O’Neill, \& Darling, 2021

Rethinking Pragmatics

Blaiser, O'Neill, \& Darling, 2021

Behavior (Keetelars, Cuperus, Jansonius \& Verhoeven, 2010)

Importance of pragmatics

Difficulties with peer friendships and psychosocial functioning (Whitehouse, Watt, Line \& Bishop, 2009),

Lower quality of life ratings (Blaskova \& Gibson, 2012)

Blaiser, O’Neill, \& Darling, 2021

Pragmatics in children who are DHH

Delays compared to peers in:

- Types of communication (Goberis et al., 2012)
- Variations of interactions (Most et al., 2010)
- Success of initiations (DeLuzio \& Giralometto, 2011)

Assessment

Intervention

Blaiser, O'Neill, \& Darling, 2021

How do we assess pragmatics?

Observation

Checklists

Blaiser, O’Neill, \& Darling, 2021

Challenges with assessment

Challenge observing all of the behaviors

Lack of

standardizati on

Assessing Pragmatics in Toddlers

Blaiser, O'Neill, \& Darling, 2021

Assessing Early Pragmatics

Blaiser, O'Neill, \& Darling, 2021

LUI Subscales Comprising the LUI Total Score

Part 2: Communication with Words

- Types of words used
- Requests for help

Part 3: Longer Sentences

- Use of words to get you to notice something
- Questions and comments about things
- Question and comments about self \& others
- Use of words in activities with others
- Teasing and sense of humour
- Interest in words and language
- Adapting communication to other people
- Building sentences and stories

Total LUI Score = 161 items of Parts 2 \& 3

Blaiser, O’Neill, \& Darling, 2021

Idaho Collaborative Assessment Project (ICAP)

Blaiser \& Bargen, 2020

Identifying Metrics

Outcome	Measure
Child language (content)	
Child language (use)	
Child hearing skill development	
Child hearing technology use	
Family Support	

Blaiser \& Bargen, 2020

Identifying Measures to Address Outcomes

Outcome	Measure
Child language (content)	MacArthur Bates Communication Development Inventory
Child language (use)	Language Use Inventory
Child hearing skill development	LittlEars
Child hearing technology use	Audiology reports
Family Support	Family Outcomes Survey

Blaiser \& Bargen, 2020

Participants (LUI specific)

$N=85$ (Females= 46; Males=39)

Age Range: 18-48 months ($M=30.8$ months)

Ages In Months

■ 18-22 months ■ 23-27 months

- 28-32 months ■ 33-37 months
- 38-46 months

LUI Percentile Scores

Part 1 (Gestures)	Part 2 (Words)	Part 3 (Sentences)	Total	
M	77	35.3	12.3	12.6
SD	29.7	38.8	20.5	21
Range	98	98.5	98.5	98.5

Blaiser, O'Neill, \& Darling, 2021

Average Number of Skills ($n=85$) of Total Possible

\square Total possible
Blaiser, O'Neill, \& Darling, 2021

Average Percentile Rank for the LUI

Blaiser, O’Neill, \& Darling, 2021

Average Percentile Rank for the LUI Subscales

Blaiser, O’Neill, \& Darling, 2021

Average Percentile Rank for the LUI Subscales

Blaiser, O’Neill, \& Darling, 2021

Language Use Inventory: Heat map

			Child age (months) (bins)								
Part (group)	Section (group)	Question/Section	16	20	24	28	32	36	40	44	Total
Part 1: How your child co..	Part 1 Percentile	Part 1 Percentile	99.0	85.0	91.3	63.2	84.7	77.5	65.0	87.0	80.1
Part 2: Your child's	Part 2 Percentile	Part 2 Percentile	88.0	40.0	33.0	58.0	40.1	73.0	99.0	71.5	53.6
communication with words	Section C: Types of words your child u..	C Percentile	97.0	36.0	25.0	58.8	46.7	70.8	99.0	70.5	55.8
	Section D: Your child's requests for he..	D Percentile	42.0	51.5	60.7	48.3	56.7	99.0	99.0	66.3	62.2
Part 3: Your child's longer	Section F: How your child uses words t..	F Percentile	21.0	42.3	31.7	28.7	38.2	68.4	99.0	35.0	43.6
sentences	Section G: Your child's questions and ..	G Percentile	69.0	63.0	19.0	19.3	31.2	64.2	99.0	23.0	41.5
	Section H: Your child's questions and	H Percentile	49.0	24.2	30.5	22.0	14.8	50.8	12.0	11.5	27.2
	comments about themselves or other	H Self Percentile	34.0	27.6	76.0	36.0	21.5	65.0	33.0	15.0	34.2
	people	H Other Percentile	57.0	32.8	19.7	6.4	9.8	64.5	5.0	13.5	23.3
	Section I: Your child's use of words in ..	1 Percentile	25.0	29.0	17.0	52.5	35.3	56.8	56.0	38.5	37.6
	Section J: Teasing and your child's sen..	J Percentile	47.0	32.3	55.7	17.9	26.2	30.4	14.0	32.0	28.2
	Section K: Your child's interest in wor..	K Percentile	60.0	28.3	26.0	37.3	20.3	38.0	5.0	39.0	28.1
	Section M: How your child adapts con..	M Percentile	28.0	21.5	27.0	18.0	17.4	36.5	19.0	2.0	22.3
	Section N: How your child is building I..	N Percentile	43.0	31.2	19.3	6.1	15.7	15.0	24.0	5.0	17.8
	Part 3 Percentile	Part 3 Percentile	36.0	19.2	11.0	19.0	13.0	24.3	16.0	4.0	17.1
Totals	Total LUI Percentile	Total LUI Percentile	45.0	16.2	16.5	21.5	12.1	25.8	19.0	5.0	17.8

Blaiser, O’Neill, \& Darling, 2021

Level of Pragmatic Difficulty (Percentiles)

Pragmatic Difficulties	N
Percentile $\leq 7)$	57

Severe Pragmatic Difficulties 45 53\%
(Percentile ≤ 2)

Form

Phonology/Speech production

Early Milestones

English Consonants-Age of Acquisition

Adapted from Sanders 1972 and Templin 1957

Speech perception-
Speech production

- FOUNDATION: Children need to be able to hear a sound to produce it, to alter it, to match a target
-(Optimized) technology is key!
- If a child is having difficulty with producing a sound, you need to make sure that they can hear the sound!

Assessment

- Goldman Fristoe is commonly used
- Provides a normative sample
- Doesn't tell us much (or anything) about acoustic information
- Average Standard Score: 75.87 (sd= 21.30)

Standard Score by Participant

Acoustic Monitoring Protocol (AMP)

Acoustic Monitoring Protocol (Lamb \& Blaiser, 2012)

- Developed to supplement the GFTA
- Meet the need of having an acoustic lens
- Support interprofessional collaboration
-Piloting/in preparation now

PLACE-MANNER-VOICING ANALYSIS

-Look at all errors the child is producing.
-For example, what type of errors:

- A child who is producing tat for pat and cat
- A child who is making m / n errors

Table 2-1. Speech Information Carried by the Key Speech Frequencies of $250-4000 \mathrm{~Hz}(\pm$ one half octave)

250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
- First formant of vowels / $\mathrm{u} /$ and $/ \mathrm{i} /$ - Fundamental frequency of females' and children's voices - Nasal murmur associated with the phonemes $/ \mathrm{m} /, / \mathrm{m} /$, and/ng/ - Prosody - Suprasegmental patterns (stress, rate, inflection, intonation) - Male voice harmonics	- First formants of most vowels - Harmonics of all voices (male, female, child) - Voicing cues - Nasality cues - Suprasegmentals - Some plosive bursts associated with /b/ and $/ d /$	- The important acoustic cues for manner of x articulation - Second formants of back and central vowels - Consonant-vowel and vowel-consonant transition information - Some plosive bursts - Voicing cues - Suprasegmentals - Unstressed morphemes	- The important acoustic cues for place of articulation - The key frequency for speech intelligibility - Second and third formant information for front vowels - Consonant-vowel and vowel-consonant transition information - Acoustic information for the liquids $/ \mathrm{r} /$ and $/ / /$ - Plosive bursts - Affricate bursts - Fricative turbulence	- The key frequency for /s/ and /z/ audibility that is critical for language learning: - plurals - idioms - possessives - auxiliaries - third person singular verb forms - questions - copulas - past perfect - Consonant quality

- Voicing cues

[^0]

HIGH

Male, Age: 37, BAHA, Fit: 15 Enrolled: 18

Male, Age: 63, CI, Fit: 3 Enrolled: 54

Male, Age: 62, HA, Fit: 18 Enrolled: 40

You try...

High Frequency

Female, Age: 78, CI, Fit: 18 Enrolled: 22

Female, Age: 58, CI, Fit: 20 Enrolled: 50

Take away

- Must know how to communicate with audiologist about speech production
- Find common errors
- Understand errors and error patterns

Intelligibility

- Intelligibility ratings based on sentence repetition or reading tasks
- Challenges with sentence tasks for younger children with HL
- Ertmer (2010, 2011)

Intelligibility Scale

SPEECH INTELLIGIBILITY CHECKLIST
 FOR
 UNFAMILIAR LISTENER

Please rate the child's speech intelligibility using the following scale. Think about how well you understand this child's speech in a casual communication situation. CIRCLE the most appropriate number. If the child is not using speech circle "No Rating".

Rating	Current Functioning
$\mathbf{6}$	I always or almost always understand the child's speech with little or no effort
$\mathbf{5}$	I always or almost always understand the child's speech; however, I need to listen carefully
$\mathbf{4}$	I typically understand about half of the child's speech $\mathbf{3}$
$\mathbf{2}$	The child's speech is very hard to understand. I typically understand only occasional, isolated words and/or phrases
$\mathbf{1}$	I never or almost never understand the child's speech
No Rating	Speech intelligibility could not be judged because the child is producing few or no word approximations

Child's name: \qquad Date of video: \qquad
Name of person completing this form: \qquad

Intervention

- Ensure that the child can hear the differences
- Use discrimination tasks to highlight differences
- Reinforce the sounds that the child can produce
- Don't over-produce or feel like things need to be "more visual"
- Understand that kids with HL can have phonological/articulation disorders too!

SPEECH INTELLIGIBILITY CHECKLIST
 FOR
 UNFAMILIAR LISTENER

Please rate the child's speech intelligibility using the following scale. Think about how well you understand this child's speech in a casual communication situation. CIRCLE the most appropriate number. If the child is not using speech circle "No Rating".

Rating	Current Functioning
$\mathbf{6}$	I always or almost always understand the child's speech with little or no effort
$\mathbf{5}$	I always or almost always understand the child's speech; however, I need to listen carefully
$\mathbf{4}$	I typically understand about half of the child's speech
$\mathbf{3}$	I typically understand about 25% of the child's speech occasional, isolated words and/or phrases
$\mathbf{2}$	I never or almost never understand the child's speech
1No Rating	Speech intelligibility could not be judged because the child is producing few or no word appraximations

Child's name: \qquad Date of video: \qquad
Name of person completing this form: \qquad

Trusting your professional judgment

Communication/Collaboration

- Positive relationship between speech production and speech perception
- Speech perception practices are also in transition as we have younger populations performing better (Muñoz, Blaiser, \& Schofield, 2012)

Words Correct Over Each Time Point

Differences in Total Words Correct Across Time Points

Red flags

- Decrease in speech production
- Decrease in intelligibility
-"Slushy speech"
- Omission or substitution of phonemes

Morphology \& Syntax

ASSESSMENTS

Average Standard Scores by Domain

Average Standard Scores by Domain

Participants

- 47 preschool children who are DHH
- All attended oral preschool programs across the US

Do all composites reflect the same information?

- Core Language: $\mathrm{M}=86.79$; $\mathrm{SD}=17.98$
- Language Structure: $\mathrm{M}=83.30$; $\mathrm{SD}=18.34$

Statistically significant difference: $t(46)=5.254, p=.000$

Within the composite scores (Expressive)

Word Structure (WS)

Scores

Core Language score Expressive Language index Language Structure index

Materials Needed

Stimulus Book 1

Repetitions

Allowed

Discontinue Rule
After 8 consecutive zero scores

Circle 1 for a correct response and 0 for an incorrect response. If the child gives a response that is different from the expected response, but demonstrates the target and is meaningful to the context of the item, write it in the space provided and score the response as correct.
Demo Here is a boy [point] and here... [point] is a girl.
Trial 1 This boy [point] is standing. This boy is [point] \qquad . (sitting)
Trial 2 This girl [point to the girl on the left] has two cats. This girl [point to the girl on the right] has two \qquad . (dogs)

Item Analysis: Word Structure

Word Structure (WS)

Scores

Core Language score
Expressive Language index
Language Structure index

Materials Needed
Stimulus Book 1

Repetitions

Allowed

Discontinue Rule
After 8 consecutive zero scores

Circle 1 for a correct response and 0 for an incorrect response. If the child gives a response that is different from the expected response, but demonstrates the target and is meaningful to the context of the item, write it in the space provided and score the response as correct.
Demo Here is a boy [point] and here... [point] is a girl.
Trial 1 This boy [point] is standing. This boy is [point] \qquad . (sitting)
Trial 2 This girl [point to the girl on the left] has two cats. This girl [point to the girl on the right] has two \qquad . (dogs)

Score		Score	
1. sleeping	1 f	10. horses	10
2. walking	10	11. flies	10
3. in/inside the box	10	12. king's/queen's	10
4. hers	10	13. singer	10
5. on the chair	10	14. He is./ He is standing.	10
6. her	10	15. will slide/will be sliding	10
7. It is/It's big.	10	16. herself	10
8. him	10	17. climbed	10
9. sleeps	10	18. faster	10

Table 2-1. Speech Information Carried by the Key Speech Frequencies of $250-4000 \mathrm{~Hz}$ (\pm one half octave)

250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
- First formant of vowels /u/ and /i/ - Fundamental frequency of females' and children's voices - Nasal murmur associated with the phonemes $/ \mathrm{m} /, / \mathrm{n} /$, and /ng/ - Prosody - Suprasegmental patterns (stress, rate, inflection, intonation) - Male voice harmonics - Voicing cues	- First formants of most vowels - Harmonics of all voices (male, female, child) - Voicing cues - Nasality cues - Suprasegmentals - Some plosive bursts associated with /b/ and /d/	- The important acoustic cues for manner of articulation - Second formants of back and central vowels - Consonant-vowel and vowel-consonant transition information - Some plosive bursts - Voicing cues - Suprasegmentals - Unstressed morphemes	- The important acoustic cues for place of articulation - The key frequency for speech intelligibility - Second and third formant information for front vowels - Consonant-vowel and vowel-consonant transition information - Acoustic information for the liquids $/ \mathrm{r} /$ and $/ / /$ - Plosive bursts - Affricate bursts - Fricative turbulence	- The key frequency for /s/ and /z/ audibility that is critical for language learning: - plurals - idioms - possessives - auxiliaries - third person singular verb forms - questions - copulas - past perfect - Consonant quality

[^1]
Grammatical Morphemes Acquired In Early Childhood

Adapted from Brown, R.,1973

Grammatical morpheme	Age (in months)
Present progressive -ing	$19-28$
Plural -s	$27-30$
Preposition in	$27-30$
Preposition on	$31-34$
Possessive 's	$31-34$
Regular past tense -ed	$43-46$
Irregular past tense	$43-46$
Regular third person singular -s	$43-46$
Articles a, the, an	$43-46$
Contractible copula be	$43-46$
Contractible auxiliary	$47-50$
Uncontractible copula be	$47-50$
Irregular third person	$47-50$

Example
"Mommy eating"
"Baby shoes"
"Hat in box"
"Hat on chair"
"Baby's ball"
"Kitty jumped"
"We ate"
"Mommy drives"
"The car"
"She's happy"
"She's coming"
"We were here"
"She did it"

Comparing Scaled Scores

Age of subjects in months

Subtest Scaled Score	Core Language	Receptive Language		Expressive Language	Language Content		Language Structure
	$3-6$	34	5-6.	3-6\%	$3-4$	5-6	3-6
Sentence Structure SS	11	11	1				11
Word Structure WS	12			12			12
Expressive Vocabulary EV	10			10	10		
Concepts \& Following Directions \quad C\&FD		12	1		12	7	
Recalling Sentences \quad RS				10			10
Basic Concepts $B C$		12			12		
Word Classes-Receptive WC-R			\}				
Word Classes-Total WC-T							
Core Language Score and Indexes							
Sum of Subtest Scaled Scores	33	35		32	12		33
Standard Score*	100	109		104	106		106
Standard Score Points +/-	7						
Confidence Interva) (__\% Level)	99 to 113	to	to	to	to	tof	to
Percentile Rank	64	13		61	66		lodo
Percentile Rank Confldence Interval	to	to	to	to	to	t ${ }^{6}$	to
	Core Language	Receptive Language		Expressive Language	Lañguage Content		Language Structure

[^2]Preschool Language Scale (PLS)

Item Analysis: PLS

-Preschool Language Scale-4 (Zimmerman, Steiner \& Pond, 2002)

- Initially given to 31 children in the preschool program
- Scores removed < 85 Standard Score to focus on those within normal limits
(King, Olson, Shaver \& Blaiser, 2009)

PLS Item Analysis: Final Study Sample

	PLS Scores of Final Sample		
$N=21$	Mean	SD	Range
Age	$4 ; 1$	9.2	$3 ; 0-5 ; 5$
Auditory Comp	99.3	7.4	$88-112$
Expressive Communication	99.1	9.3	$86-115$

(King, Olson, Shaver \& Blaiser, 2009)

Trends in Auditory Comprehension

- Morphology
- His/her pronouns
- Negatives in sentences*
- -er endings
- Passive voice*
* 50% or more of students missed these questions
(King, Olson, Shaver \& Blaiser, 2009)

Trends in Expressive Communication

- Morphology
- Plural "s"
- Possessive "s"
- Repeating sentences (due to morphological markers)*
- -er endings*
- Past tense
* 50% or more of students missed these questions

Trends in Auditory Comprehension

- CONTENT
- Identify items within categories
- Objects that don't belong
- Quantity concepts (more/most, half/whole)*
- Time concepts (night/day)
* 50% or more of students missed these questions
(King, Olson, Shaver \& Blaiser, 2009)

Trends in Expressive Communication

- CONTENT
- Object function
- Completing analogies
- Describing similarities
- Naming items within a category
* 50% or more of students missed these questions

Case Study \#1: DEVIN

- Current Age: 6;2
- Diagnosis: Failed hearing screening, Auditory Neuropathy
- Significant Medical History: Born premature at 26 weeks
- Hearing Loss: Bilateral sensorineural severe to profound, late amplification
- Hearing aid trial with limited success
- Age of Implantation: Bilateral implantation in shortly after stared school (at age 3;8)
- Treatment Duration: Since after trial

Devin: Time 1
 PLS-4 Standard Scores

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample: Time 1

- Walk
- He running
- In school scream
- No
- Yes
- Watching
- Be quiet
- Hearing
- Car
(King, Olson, Shaver \& Blaiser, 2009)
- Take turn with car
- Stop
- Me
- Matt glue

Devin: Time 2 PLS-4 Standard Scores

(King, Olson, Shaver \& Blaiser, 2009)

Devin: Time 2 PLS-4 Standard Scores

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample: Time 2

-Who gave you the clip?

- Grandma is walking inside.
- I go to a baseball game.
- A lot of little kid go to the baseball game.
- Lucy didn't go to the baseball game.
- Lucy go to the football game
- That's a monster.
- You gotta little monster and I got a big monster.
-Where Erika R at?
- Maybe she go to the bumper car.
- Why no field trip?
- He is getting bigger. He growing up.

Case Study \#2: Steven

- Current Age: 3; 8
- Diagnosis: Bilateral sensorineural hearing loss
- Significant Medical History: Malnutrition, internationally adopted from orphanage care
- Hearing Loss: Bilateral sensorineural moderate to severe, late identification
- Bilaterally aided at 19 months
(King, Olson, Shaver \& Blaiser, 2009)

Case Study: Steven

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample: Time 1

- Mommy
- Mommy sleeping
- Daddy
- Night night, Mommy
- Daddy sleeping
- Night night, Daddy
- Bye bye, Dad
- Bye bye, Mom
- Eat
- Open
- Puppy

Steven: Time 1

(King, Olson, Shaver \& Blaiser, 2009)

Steven: Time 2

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample: Time 2

- Mommy going drive in mommy car and daddy going to drive in dad car
- Mommy gonna ride in the boat, and daddy gonna ride in the boat.
- Where the water?
- That daddy boat!
- Stay in the boat. Don't fall down in the ocean! That the ocean.
- Don't fall down
- They got wet!
- Don't fall in the ocean again!
(King, Olson, Shaver \& Blaiser, 2009)
- That a captain and that a captain
- There two captain
- That mommy boat and that daddy boat
- I think he going ni-night
- I think he not going ni-night. I think he going to bite!
- Now mommy going to eat the apple

Case Study \#3: Zane

- Current Age: 4;9
- Diagnosis: Enlarged Vestibular Aqueduct Syndrome (EVAS), slight Mondini malformations bilaterally
- Significant Medical History: Identified at birth
- Hearing Loss: Bilateral sensorineural moderate to profound
- Bilaterally aided since infancy
- Age of Implantation: Right ear implanted in second year of study
- Treatment Duration: Since 2;0
- Bilingual: Cantonese and English

Case Study: Zane

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample Zane: Time 1

ca The car go in the garage ca He going to the hospital as He going back to the hospital over here
as He have to go up to a parking spot
© He going back home now up the road
$\propto \mathrm{C}$ He will go back up to the (unintelligible) and the
he want to go back home (unintelligible) and the
he want to go back home
$\infty<$ he going to see the
window
C Oh no! the car fall down.
©s He will go back and try again
$\propto 3$ He try to use the elevator
© He going back home because he want to play
(King, Olson, Shaver \& Blaiser, 2009)

Case Study: Zane

(King, Olson, Shaver \& Blaiser, 2009)

Case Study: Zane Time 2

(King, Olson, Shaver \& Blaiser, 2009)

Language Sample: Time 2

- Did the other group have four friends here?
- My dinosaur name is Sarah
- Do you know what, Sarah? I was sick September 20^{th}.
- My birthday's coming up. How can I get to be five?
- I went to Chuckie Cheese's a long time ago but one of my friends came, Eric but another friend didn't come because he was not invited.
- Do you know what? Tomorrow on Tuesday I'm going to take my day off.
- Why we have to cut a hole in the dinosaur's mouth?
- Black is my favorite color because so you can see better and I'm wearing black strip shirt today.
- You know, there was a nice shark at Mall of America.
- Can you hear it Matt? It's liquid.
- I lịke ketchup with French fries but not other food.
- Even, you know what? My dad was at work and I told him about the T-rex dinosaurs.
(King, Olson, Shaver \& Blaiser, 2009)

Data over time

Semantics

ball (1) bark (1) birdy (1) bite (1) cat (1) daddy (1) doctor (1) does (1) 0

 doggie eat eat hand he mexy kitty-cat (1) meow (1) $\prod_{\text {(2) mommy (1) mouth (1)oink (1) pig (1) play (1) quack (1) }}$trees(1) vet(1) who (1) whole(1)
yeah
always (2) and (10) ynback (2) bag (4) been bemend (1) bero (1) But (3) Can (7) comen (3)
 (2) fit (2) for (2) arem Fred (2) get (2) giv
 here (2) namese how (2) maness whunting (2)m
 maces (1) Meyer (2) need (2) new (2) nece (1) or mpop -(1) not (2) omentrad (1) (f) (1) (1) one (3) over (3) penguins (3) patere) (1) (1) (1) rich (3) right (3) ocas (y) min (1) mad (1) she (3),

Assessment-Intervention

- Standardized assessments (though useful) may not provide enough information
- Children need explicit teaching of things that are implicit
- Collaboration is key
- Repetition is key
- Progress monitoring is essential

Why does this happen?

Parent gone

Distance
Parent gone

Distance
Parent gone

Distance
Parent gone

Noise

Parent gone

Parent gone

Collaboration

- Children are identified young, so aren't able to give us feedback
- Parents need to understand their role - and be empowered

Today collaboration is more important than ever

Importance of collaboration for today's child who is DHH

Who are core collaborative team members for children who are D/HH?

SLPs can offer

- How child is performing in quiet
- How child performs with structure
- Individual time with parents/family members
- Multiple opportunities for practice
- Differential diagnosis about speech/language errors

AUDs can offer

- Programming changes
- Retention options
- Technology options
- Wear time information
- Speech perception results
- (Less) familiar intelligibility

Educators of the DHH can offer

- Classroom behavior
- Classroom rules \& reinforcement strategies
- Generalization information
- Performance in noise (various settings)
- Performance with peers
- Performance in less structured environments

Assessment practices

- SLPs have existing tools to work with many children who are DHH
- Going beyond the score, developmental norms
- Alternative models of assessment
- Patterns in strengths and needs in assessments
- Acoustic access
- Collaboration

Thank you!

-Questions, comments, ideas?

- Contact information: Kristina.Blaiser@isu.edu 208-373-1814

[^0]: Source: Adapted from Speech and the Hearing Impaired Child (2nd ed.) by D. Ling, 2002, Washington, DC: Alexander Graham Bell Association of the Deaf and Hard of Hearing. Reprinted with permission.

[^1]: Source: Adapted from Speech and the Hearing Impaired Child (2nd ed.) by D. Ling, 2002, Washington, DC: Alexander Graham Bell Association of the Deaf and Hard of Hearing. Reprinted with permission.

[^2]: *See Appendix C in Examiner's Manual.

